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The energy distributions of secondary electrons produced by energetic carbon ions �in the energy range used,
e.g., in hadron therapy�, incident on liquid water, are discussed. For low-energy ions, a parametrization of the
singly differential ionization cross sections is introduced, based on tuning the position of the Bragg peak. The
resulting parametrization allows a fast calculation of the energy spectra of secondary electrons at different
depths along the ion’s trajectory, especially near the Bragg peak. At the same time, this parametrization
provides penetration depths for a broad range of initial-ion energies within the therapeutically accepted error.
For high-energy ions, the energy distribution is obtained with a use of the dielectric-response function ap-
proach. Different models are compared and discussed.
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I. INTRODUCTION

An accurate energy distribution of electrons produced as a
result of the ionization of water molecules induced by fast
incident ions is a key piece of information for many appli-
cations. One of the most important among these applications,
since liquid water is considered to be a good tissuelike me-
dium, is related to its relevance to the physics of ion-beam
cancer therapy and radiation protection in space. Ion beam
cancer therapy has become an operative treatment tool,
whose power is based on theoretical and computational
methods of basic science �1�. On the other hand, radiation
damage by ions is becoming a major topic of research for
shielding of human space missions by the ESA and NASA
�2�. These two fields of applications differ slightly in the
initial energies of incident ions, hundreds of MeV/u for can-
cer therapy and �1 GeV /u for radiation protection from
galactic cosmic rays.

The goal of studies applied to both curing and shielding
purposes is an understanding and controlling of the radiation
damage, which is focused on DNA damage and its repair.
Many details of the involved physical processes, starting
from the incidence of an energetic ion on tissue and leading
to biological damage, are still far from being explained and
calculated on a nanoscopic level. An attempt to build an
inclusive picture of relevant physical processes was sug-
gested in our previous work �3,4�, which proposed a multi-
scale approach to this problem.

It is widely accepted that the major part of damage done
by ions is related, directly or indirectly, to the secondary
electrons produced by ionization of the medium. These elec-
trons may interact with parts of DNA molecules in the cell
nuclei, generate other secondaries, such as other electrons or
radicals, which can then interact with DNA. Secondary elec-
trons also participate in energy transfer leading to thermal
spikes �5� which contribute to biomolecular damage. Finally
each ionization produces a hole which may also cause DNA
damage.

In the multiscale approach �3�, the energy spectrum of
secondary electrons occupies the key position. It is also an
important input for numerous Monte Carlo �MC� simulations
of track structure �6–8�. An increasing interest for a more
accurate shape of this distribution, especially at low energies,
has followed the well-known experiments by the Sanche’s
group �9� revealing possible damage induced by low-energy
��10 eV� electrons.

The studies of the energy distribution of secondary elec-
trons have been carried out by different groups �e.g., �8,10��.
In a majority of works, energetic electrons or protons are the
primary projectiles �10,11�; while a few studies have been
extended to heavier ions �12,13�. In our analysis, we con-
sider carbon ions because they have been largely used in
ion-beam therapy both in Germany and Japan �14�. However,
our analysis can also be extended to other ions.

The difficulties in analyzing singly differential ionization
cross sections are basically of two types: �1� the impossibil-
ity to depict all energy ranges using the same formalism
because the energy range of interest is too large to be in-
cluded in the range of validity of a single approximation; �2�
the deviation of the ion’s propagation through liquid water
from that of water vapor often used in experiments, is un-
known. As the applicability of the Born approximation is a
key issue in this connection, we divide our analysis �as it is
usual in similar works �8,10�� between the fast and relatively
slow regimes of the projectile’s velocity, corresponding to
different parts of the ion’s trajectory. First, we start with a
general approach valid for slow ions. This approach is the
only possibility in that energy range, and the accuracy in the
shape of secondary electron spectra is limited in the entire
energy range. Then, we present a method valid only for fast
ions, but returning more accurate electron energy distribu-
tions in that range.

II. SLOW REGIME

In order to account for the region where the ion’s energy
is smaller than 500 keV/u, where the Born approximation is
not valid, we use a parametric approach built on existing
experimental data. As was shown in our previous papers
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�15,16�, the probability to produce dN secondary electrons
with kinetic energies from W to W+dW, dN

dWdW, from a seg-
ment of the ion track d�, is proportional to d�

dWd�, where d�
dW is

the singly differential ionization cross section �SDCS�. This
cross section is the main characteristic in our analysis defin-
ing both the ion’s stopping in the medium and the energy
spectrum of secondary electrons.

Since the angular distribution of prevailing low-energy
electrons �W�45 eV� is rather flat over the whole angular
range �17�, the SDCS is sufficient for our analysis. Besides
the kinetic energy of secondary electrons and the properties
of water molecules, the SDCS depends on the kinetic energy
of projectiles, T, and their charges, z.

A. Semiempirical model for vapor water

In our previous papers �15,16�, we used a model based on
a parametrization by Rudd �18�, which yields an analytical
formula for SDCS on a wide energy range combining the
experimental data for water vapor, calculations within the
plane-wave Born approximation, and other theoretical mod-
els. This model, original for protons, has been extended first
to helium �12� and then to heavier ions by us �15,16� and a
few other works �19,20�.

We used the following parametric functions �16�:

d��W,T�
dW

= zef f
2 �

i

4�a0
2Ni

Ii
�R

Ii
�2

�
F1

i �vi� + F2
i �vi��i

�1 + �i�3	1 + exp��i��i − �i
max�/vi�


, �1�

F1
i �v� = A1

i

ln� 1 + v2

1 − 	2� − 	2

B1
i /v2 + v2 +

C1
i vD1

i

1 + E1
i vD1

i +4
, �2�

F2
i �v� = C2

i vD2
i A2

i v2 + B2
i

C2
i vD2

i +4 + A2
i v2 + B2

i
. �3�

where the sum is taken over the electron shells of the water
molecule, a0 is the Bohr radius, R is the Rydberg, Ni the shell
occupancy, Ii the ionization potential of the shell, �i=W / Ii,
vi= �mV2 / �2Ii��1/2, �i

max=4vi
2−2vi−R / �4Ii�; m is the mass of

electron, V is the velocity of the projectile, T its kinetic en-
ergy and 	=V /c.

The corresponding fitting parameters, taken from Ref.
�18�, A1

i . . .E1
i , A2

i . . .D2
i , and �i are listed in Table I and the

ionization potentials in Table II �vapor row�.
This parametrization is different from the original �18� in

two respects: first, the expression for F1 is modified so that it
has the correct asymptotic behavior in the relativistic limit
�16�, and second, it contains an effective charge of the ion
zef f, which depends on the velocity of the ion. The effective
charge takes into account the effect of charge transfer, i.e.,
gradual reduction in the original charge of the ion as it slows
down. For the effective charge, we have used an expression
given by Barkas �21�, zef f =z�1−exp�−125	z−2/3��.

These two modifications give the shape of the LET de-
pendence along the track for a single ion. However, ions in
the beam are spread in energies due to scattering. The strag-
gling in energies is taken into account in Ref. �16�, but more
details are given in Ref. �22�. All in all, our resulting general
parametrization of SDCS for water yielded a 97% accuracy
in reproducing the Bragg’s peak position in comparison with
experiment and compared very well with MC simulations
�23� in shape �without nuclear fragmentation�.

B. Semiempirical model extensions for liquid water

However, the parametrization for SDCS, used in Refs.
�16,22�, did not take into account medium density effects,
i.e., the effects arising from the difference between the ion’s
propagation in liquid water from that of vapor. We used the
liquid-water density, but took all other parameters corre-
sponding to water vapor. Unfortunately, the experimental
data for ionization cross sections in liquid water are very
limited and insufficient for making an independent param-
etrization. However, since the SDCS of ionization along with
excitation contribute to the stopping cross section, directly
related to LET �16�, it is possible to extract a modified pa-
rametrization of the SDCS for liquid water from different
available experiments. In Ref. �10�, the experimental mea-
surements of stopping cross sections �24� are used as a func-
tion of the ion’s energy. This only provides a single curve to
which to compare. Instead, we choose to fit the parametriza-
tion with measurements of the LET dependence on the pen-

TABLE I. Fitting parameters for the two inner shells of the water molecule �1a1 ,2a1� and for the three outer shells �1b2 ,3a1 ,1b1� in the
original parametrization by Rudd for vapor �18� and in a parametrization here introduced for liquid.

Parameter A1 B1 C1 D1 E1 A2 B2 C2 D2 �

Inner shell 1.25 0.5 1.0 1.0 3.0 1.1 1.3 1.0 0.0 0.66

Outer shell Vapora 0.97 82 0.4 −0.3 0.38 1.04 17.3 0.76 0.04 0.64

Outer shell Liquid �this work� 1.02 82 0.50 −0.78 0.38 1.07 14.5 0.61 0.04 0.64

aReference �18�.

TABLE II. Ionization potentials for vapor �18� and liquid �35�
water �in eV�. In the two approaches presented in this paper, the
first and the second set are respectively used.

Shell 1b1 3a1 1b2 2a1 1a1

Vapor 12.61 14.73 18.55 32.2 539.7

Liquid 10.79 13.39 16.05 32.3 539.0
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etration depth in liquid water. These depths have been mea-
sured at GSI �25,26�. This not only provides several curves at
different initial energies, but also a direct comparison with
the carbon ion data. So instead of tuning parameters directly
to the stopping cross sections as in �10�, we use the reported
Bragg-peak profiles, for different initial-ion energies and
thus the LET as a function of the penetration depth.

In fact, the integration of the inverse of the LET gives the
position of the Bragg peak. Hence, we can adjust the param-
eters of the SDCS by tuning the depth of the Bragg peak to
the experiment. Such a procedure is rather simple and fast
using our approach �16�.

So, we start with the SDCS of ionization, which includes
relativistic effects and charge transfer as an input to the stop-
ping cross section, defined as

�st = �
i
�

0

Wmax

�W + Ii�
d�i�W,T�

dW
dW . �4�

Now, we need to add the contribution of excitation to the
stopping cross section. These cross sections are accounted by
scaling with our effective charge, depending on ions’ veloci-
ties, a semiempirical formulation by Miller and Green �27�
for protons

�exc,k�T� = zef f
2 ak�T − Ek�

bk + Tck
, �5�

where the index k corresponds to five different excitation
transitions, i.e., to states A1B1, B1A1, Rydberg A+B, Rydberg
C+D, and diffuse bands, respectively; �exc,k�T� is the exci-
tation cross section, Eexc,k is the corresponding excitation en-
ergy and ak ,bk ,ck are parameters reported in Table III and
computed from data reported and fully explained in Refs.
�10,27�, giving cross sections in Å2 when energy is input in
eV. The stopping cross section is then calculated �16� as

�st
� �T� = �st�T� + �

i

Eexc,i�exc,i�T� . �6�

The LET is given by n�st
� �T�, where n is a number density of

liquid-water molecules.
At this point, we add the energy straggling correction, i.e.,

a widening of the peak arising from the stocasticity of the
energy-loss phenomenon and related to the multiple scatter-
ing of ions. This correction affects also the position of the
Bragg peak, slightly reducing its depth. The correction is
given by

� dT

dx
�x� =

1

�str�x0��2�
�

0

x0 dT

dx
�x��exp�−

�x� − x�2

2�str�x0�2�dx�,

�7�

where x0 is a maximum penetration depth of the projectile,
and �str�x0�=0.012x0

0.951 /�A is the longitudinal-straggling
standard deviation �in cm, when x0 is also in cm� computed
with a phenomenological formula introduced by Chu �28�,
and depending �through x0� on the initial energy of the ion
T0. A is the ion’s mass number. We found, that if we gradu-
ally change the parameters from Rudd’s model within the
experimental error �18�, the Bragg-peak position can be
tuned to match those obtained in stopping-power experi-
ments �see Fig. 1�, as well as MC transport code simulation
�MCHIT code based on GEANT4 toolkit �23,29��. The tuned

TABLE III. Energies and parameters for excitation cross sec-
tions �Eq. �5�� corresponding respectively to states A1B1, B1A1, Ry-
dberg A+B, and Rydberg C+D, and diffuse bands.

k
Ek

�eV� ak bk ck

1 8.17 2245 4493 0.85

2 10.13 6319 7020 0.88

3 11.31 4387 8135 0.88

4 12.91 989 3172 0.78

5 14.50 1214 3352 0.78
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FIG. 1. �Color online� Linear energy deposition �left panel� for a carbon ion with incident energy of 400 MeV/u, computed with different
parametrizations, within the experimental error of the original data, and compared to experiments �26� and MC simulations �23� �where no
nuclear fragmentation is considered�. The zoom in the inset shows also the experimental penetration depth. On the right panel the effect of
this parametrization �solid line� on the spectra of secondary electrons compared to the previous one �dashed line�.
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parameters are shown in the third row of Table I. The same
parametrization is applicable to a broad range of energies
�see Table IV and Fig. 2�, keeping the Bragg-peak position
within the acceptable error for therapeutic uses �0.5 mm�. In
particular, the comparison with Monte Carlo simulations,
shows on one hand an almost perfect agreement in the shape
of the curves when considering only the electromagnetic pro-
cesses and no nuclear fragmentation channels; as shown in
the limit case of a 400 MeV/u ion beam �left panel of Fig. 1�,
where fragmentation has a drastic effect on the peak shape,
but nevertheless does not affect the depth. On the other hand
it reveals a slightly better reproducibility of the experimental
depths in the whole range of energies for the present method
�Table IV�, as compared to MC, which is based on a single
value of average excitation energy ��I�=85 eV�.

Thus, the approach suggested in Ref. �16� with the param-
eters given in Table I, can be used successfully also for rapid
calculations of the Bragg-peak position; and, in case of lim-
ited nuclear fragmentations, as occur in smaller ions, may
also provide a correct deposition profile depiction �30�. A
similar procedure for energy spectra of electrons produced

by ions and by fast electrons has been performed by the
Cucinotta group �19,20�. Our approach differs from the latter
in the treatment of relativistic correction, the accounting for
charge transfer, and in the parameter values for SDCSs.

III. FAST REGIME

When ions are more energetic than 500 keV/u, the Born
approximation is valid, and a direct connection with the ex-
perimental data for liquid water is possible through the
dielectric-response model. This provides an opportunity for a
more accurate calculation of the SDCS and thus the energy
spectrum of secondary electrons.

A. Dielectric-response model: Optical approximation

In this model, presented by a number of studies for elec-
trons and protons �10,31�, but rarely extended to heavier ions
�13�, the only parametric quantity is retrieved from measure-
ments of photoionization cross sections. The main advantage
of this model, which makes it suitable, especially for treating
condensed media, is the simultaneous accounting for both
single-particle and collective effects in the analysis of the
response of a medium to the ionizing/exciting energetic par-
ticle. The key quantity is the energy-loss function, often de-
noted as 
2, derived by the dielectric function � and directly
connected to the generalized oscillator strength df /dE�E ,k�
�32,33�,


2�E,k� = Im� − 1

��E,k�� =
��p

2

2ZE

df�E,k�
dE

, �8�

where Z is the total number of electrons of a molecule of the
medium, E is the transfered energy, k is the transfered mo-
mentum, and �p=4R��a0

3nZ�1/2=21.46 eV is the plasma
frequency computed for liquid water where Z=10.

Then, for a liquid medium, it is more convenient to insert
a macroscopic cross section =n�, and consider �33�

d

dEdk
=

zef f
2 mp

�a0T


2�E,k�
k

, �9�

where the factor mp is the mass ratio between proton and
electron, and, after integration over k,

d

dE
=

zef f
2 mp

�a0T
�

kmin

kmax


2�E,k�
dk

k
. �10�

This can be expanded under the condition E�T /mp in the
following sum:

d

dE
�

zef f
2 mp

�a0T
�
2�E,0�

2
ln

T

mpR
+ B�E� + O�Emp/T�� .

�11�

In general, ��E ,k�=�1�E ,k�+ i�2�E ,k�, where both the
real part �1 and the imaginary part �2 are derivable from
experiments �34�. They are shown in Fig. 3 in the optical
limit �k=0�. Based on these functions, it is possible to derive

2 vital for our calculations.

TABLE IV. Bragg-peak positions for different incident energies
of carbon ions in water obtained with the present parametrization
with and without accounting for straggling and compared with ex-
periments �25,26� and Monte Carlo simulations �23,29�.

T
�MeV/u�

Bragg-peak position
�mm�

Us �single ion� Us �straggling� Schardt MCHIT

400 275.75 275.01 274.72 274.53

330 201.81 201.30 201.42 200.52

270 144.78 144.42 144.82 143.78

200 87.19 86.94 86.46 86.90

195 83.49 83.26 83.39

135 44.20 44.05 43.34 43.73
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/d
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m
)

T
0
=
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330 MeV/u

FIG. 2. �Color online� Linear energy deposition for carbon ions
for different initial energies T0: our model �all lines� compared to
experiments from GSI �25,26� �all dots�. Different labels �and col-
ors� indicate curves at different initial ion-energies T0.
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Thus, in cases where the optical limit is reasonable, i.e.,
when it is possible to consider ionization by ions to be simi-
lar to that of photons, it is possible to get a good approxima-
tion of the macroscopic cross section by retaining only the
first term of Eq. �11�, which is called Bethe optical term �11�.

In passing from the energy loss to the secondary electron
distribution, it is necessary to introduce the different ioniza-
tion thresholds Ij �here the real liquid-water data are used,
second row of Table II� and contributions from different
shells

d

dW
= �

j

d j

dW

d j

dW
�

zef f
2 mp

�a0T
�Gj�E�
2�W + Ij,0�

2
ln

T

mpR
+ B�E� + O�E/T�� .

�12�

The factors Gj�E� account for different contributions to the
optical spectrum from ionization of different shells. They are
computed as suggested in a series of studies performed for
protons Ref. �31� by treating separately the different transi-
tions by decomposing the resulting optical data in a sum of
Drude functions, with the constraints of respecting the sum
rule,

�2�E,0� = �
j

ion

�2,ion
�j� �E,0� + �

i

exc

�2,exc
�i� �E,0� �13�

where the �2,ion
�j� and the �2,exc

�i� represent, respectively, the con-
tributions of a given ionization or excitation mode to the
total imaginary part of the dielectric function and are com-
puted differently. In particular the ionization contributions
are expressed well by conventional Drude functions,

�2,ion
�j� �E,0� = �p

2 f j� jE

�Ej
2 − E2� + �� jE�2 �14�

where the parameters f j ,� j ,Ej are respectively oscillator
strength, width and position of the given transition and are
found by imposing the sum rules,

�
0

�

E�2�E,0�dE = �p
2�/2 �15�

�
0

�

E
2�E,0�dE = �p
2�/2 �16�

We use here the last fitted parameters from Ref. �11� �see
Table V� for the single contributions, while we directly de-
rived �1 and �2 from experiments in the region 1–50 eV, and
extrapolating with a nonlinear curve fitting to the asymptotes
�respectively, 1 and 0�. Thus we take Gj�E�
=�2,ion

�j� �E ,0� /�2�E ,0�. We can probe this approximation, as
mentioned, under the condition of E�T /mp; this turns out to
be valid for relatively high T��0.5 MeV�, when considering
the lower energy part of the secondary electron spectrum.
From Fig. 4, we can see that compared to our parametric
formalism, there is a region where the two approaches give
very close results �10–40 eV�, while at a lower energy the
curve corresponding to the parametrization deviates, as it is
not able to correctly reproduce the liquid medium, and at a
higher electron energy the Bethe optical approximation is not
valid; thus, the correct behavior is there described by the
parametric, vaporlike curve.

B. Dielectric-response model: Extension in the energy-
momentum plane

Finer approaches extend to k�0, i.e., generating the full
energy-momentum plane, characterized by the well-known
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ε1(Ε,0)
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η2(E,0)= Im[-1/ε(Ε,0)]
df/dE

FIG. 3. �Color online� Dielectric function data retrievable by
optical experimental data �34�.

TABLE V. Parameters �positions, widths and strengths� for the
ionization transitions used for the shell contributions to �2 �11�.

Shell
Ej

�eV�
� j

�eV� f j

1b1 16.30 14.00 0.2300

3a1 17.25 10.91 0.1600

1b2 28.00 27.38 0.1890

2a1 42.00 28.68 0.2095

1a1 450 360 0.3143

1 10 100
W(eV)

1
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1000

dΛ
/d

W
(µ

m
-1

eV
-1

)

our parametric model
Bethe Optical Term
with Ashley dispersion scheme
with Asoskov expansion

T= 1 MeV/u

FIG. 4. �Color online� Energy spectra of secondary electrons
induced by a carbon ion: Comparison between the parametric
model and different dielectric-response model approaches for liquid
water.
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Bethe ridge �35�, through different models, usually called
dispersion schemes. These models follow the requirements to
generate a generalized energy-loss function 
2�E ,k� obvi-
ously consistent in the optical limit �k→0� to the corre-
sponding optical function, as well as in the asymptotic be-
havior for large momentum transfer to the free-electron limit,

lim
k→�


2�E,k� � ��E − Q� , �17�

where Q=k2 /2m is the free-electron recoil energy �36�.
Many methods have been proposed, such as the one by Ash-
ley �37�, based on a �-function representation of the optical
oscillator strength of an atom

df�E�
dE

= �
j

f j��E − Ej� �18�

�with f j and Ej respectively height and position of a given
energy transition�, where Ej is extended for k�0 to Ej +Q
and a generalization to condensed matter is performed:


2�E,k� = �
0

� E�

E

2�E�,0���E − �E� + Q��dE�

=
E − Q

E

2�E − Q,0���E − Q� �19�

where ��E−Q� is a step function, equal to 1 for E�Q and 0
otherwise. The k dependence from the optical data is then
achieved.

Assuming that the weights computed in the case of 0 mo-
mentum transfer do not change significantly, it is then pos-
sible to assume G�E ,k�=G�E� and compute the contributions
to ionization of the shells with the Eq. �19� and

d j�E,k�
dW

=
zef f

2 mp

�a0T
�

kmin

kmax

Gj�E�
2�E,k�
dk

k
. �20�

The integration in k, as shown in Eq. �10�, is then per-
formed with the minimum and maximum momentum trans-
fer as the integration limits,

k� = �2m��T � �T − E� . �21�

Thorough reviews of the various possibility to expand in
the Bethe surface are available in Refs. �38,39�. Other ap-
proaches include also a way for accounting the relativistic
regime of the projectile energy. In general, this correction is
small in the energy ranges where the main focus of the in-
terest in the evaluation of electrons spectra is �Bragg-peak
region, i.e., T�10 MeV /u, where 	2�10−2�. We report
here, anyway, the results obtained by using such an ap-
proach, suggested by Asoskov et al. �40�, extended by us
from an atomic single shell system to include a multishell
target. This formalism uses a different method but performs
still a similar expansion in the energy-momentum plane by
accounting for the recoil energy in order to express the gen-
eralized oscillator strength �GOS� as a function of the optical
oscillator strength �OOS�. That, after integration in k, brings
to the formula:

d

dW
= �

j

d j

dW
,

d j

dW
=

8a0
2R2Nizef fZ

�p
2mV2 �E�2,ion

�j� �E�
E�2 �ln

2mV2

E�1 − 	2��

−
�1 − 	2�2

�2
arctan

− 	2�2

1 − 	2�1
� +

F�E�
E2 � �22�

where

F�E� = �
0

E E��2,ion
�j� �E��
�2 dE� �23�

and, for each shell, E=W+ Ii.
In Fig. 4, one can appreciate corrections induced by these

approaches to the Bethe optical term, which is reliable only
for very small values of W, as expected. We can see how the
parametric and other curves are almost coincident at large W,
where the medium differences are less dramatic. Finally, in
Fig. 5 we report a comparison with another model �13�. Ref-
erence �13� uses a stochastic simulation for the partition of
the different shells, and reports only normalized values
�hereby scaled for the present total cross section�; these re-
sults are smaller compared to ours at very low electron en-
ergies, while they are very close to ours for the energies
above 3 eV. This lower region of course is still very impor-
tant, thus a further improvement of detail of the energy
shape, with the help of further experiments, is desirable.

IV. CONCLUSIONS

This paper gives an opportunity to calculate the energy
spectra of secondary electrons produced by energetic ions
incident on tissue, mimicked by liquid water. In order to
report these electron energy distributions with the best pos-
sible accuracy for each ion energy range, we consider differ-
ent approaches.

The energy distributions of secondary electrons produced
by low-energy ions are obtained using a general parametri-
zation based on the Rudd Model with parameters modified

1 10 100
W(eV)

1

10

100

1000

dΛ
/d

W
(µ

m
-1

eV
-1

)

with Ashley dispersion scheme
with Asoskov expansion
Pimblott 2008

T= 1 MeV/u

FIG. 5. �Color online� Energy spectra of secondary electrons
induced by a carbon ion: Comparison between the reported models
and Ref. �13�.
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for liquid water distinguished from the original parameters
fitted to experiments with water vapor. The present param-
eters were obtained by fitting the depths of Bragg peaks �for
different incident energies� to the experiments done at GSI.
The obtained parametrization can be used for a fast calcula-
tion of the position of the Bragg peak for a given energy of
the projectile with a therapeutically accepted precision. An
advantage of such parametrization is its universality for dif-
ferent applications and its analyticity, which makes all calcu-
lations fast.

For higher ion energies, the dielectric-response approach,
previously tested for protons, and herein applied for heavier
ions, is shown to be successful in describing the details of
secondary electron spectra profiles. We compare two ap-
proaches and show that they can be used for different values
of secondary electron energies.

The results of this work can be used for calculations of
realistic radial dose distributions at different depths along the

ion’s trajectory. Such calculations, if rapid enough, are im-
portant for calculating the relative biological effectiveness
and treatment planning.

Further experiments, combining more realistic projectiles
�heavier ions, since the direct ionization data are only avail-
able for protons and helium ions �17�� and more realistic
media, are very much desired.
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